high performance of the support vector machine in classifying hyperspectral data using a limited dataset
نویسندگان
چکیده
to prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the hughes phenomenon. a practical way to handle the hughes problem is preparing a lot of training samples until the size of the training set is adequate and comparable with the number of the spectral bands. in order to gather adequate ground truth instances as training samples, a time-consuming and costly ground survey operation is needed. in this situation that preparing enough field samples is not an easy task, using an appropriate classifier which can properly work with a limited training dataset is highly desirable. among the supervised classification methods, the support vector machine is known as a promising classifier that can produce acceptable results even with limited training data. here, this capability is evaluated when the svm is used to classify the alteration zones of darrehzar district. for this purpose, only 12 sampled instances from the study area are utilized to classify hyperion hyperspectral data with 165 useable spectral bands. results demonstrate that if parameters of the svm, namely c and σ, are accurately adjusted, the svm can be successfully used to identify alteration zones when field data samples are not available enough.
منابع مشابه
High performance of the support vector machine in classifying hyperspectral data using a limited dataset
To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...
متن کاملClassification of hyperspectral data using support vector machine
A new spectral-spatial classification scheme for hyperspectral images is presented. Pixel-wise Support Vector Machines classification and segmentation are performed independently, and then the results are combined, using the majority vote approach. Thus, every region from a segmentation map defines an adaptive neighborhood for all the pixels within this region. The use of several segmentation t...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Comparison of classic regression methods with neural network and support vector machine in classifying groundwater resources
In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...
متن کاملMulti-class Support Vector Machine Classification for Hyperspectral Data
A progressive two-class decision classifier (pTCDC) was developed for hyperspectral data mapping to achieve maximum class separations between each class pair. In this paper, pTCDC is tested further by comparing it with other possible ways of converting multiclass to two-class classification including one-against-all and one-to-one methods used in implementing the newly developed support vector ...
متن کاملPerformance of Support Vector Machine in Classifying EEG Signal of Dyslexic Children using RBF Kernel
Received Oct 19, 2017 Revised Dec 22, 2017 Accepted Jan 14, 2018 Dyslexia is referred as learning disability that causes learner having difficulties in decoding, reading and writing words. This disability associates with learning processing region in the human brain. Activities in this region can be examined using electroencephalogram (EEG) which record electrical activity during learning proce...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
int. journal of mining & geo-engineeringناشر: university of tehran faculty of engineering
ISSN 2345-6930
دوره 49
شماره 2 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023